4.4 Article

Electron correlation: The many-body problem at the heart of chemistry

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 28, Issue 8, Pages 1307-1320

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/jcc.20581

Keywords

electron correlation; Coulomb correlation; Fermi correlation; static and dynamical corelation

Ask authors/readers for more resources

The physical interactions among electrons and nuclei, responsible for the chemistry of atoms and moleculesis well described by quantum mechanics and chemistry is therefore fully described by the solutions of the Schrodinger equation. In all but the simplest systems we must be content with approximate solutions, the principal difficulty being the treatment of the correlation between the motions of the many electrons, arising from their mutual repulsion. This article aims to provide a clear understanding of the physical concept of electron correlation and the modem methods used for its approximation. Using helium as a simple case study and beginning with an uncorrelated orbital picture of electronic motion, we first introduce Fermi correlation, arising from the symmetry requirements of the exact wave function, and then consider the Coulomb correlation arising from the mutual Coulomb repulsion between the electrons. Finally, we briefly discuss the general treatment of electron correlation in modern electronic-structure theory, focussing on the Hartree-Fock and coupled-cluster methods and addressing static and dynamical Coulomb correlation. (C) 2007 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available