4.6 Article

Prediction of surface crown pillar stability using artificial neural networks

Publisher

WILEY
DOI: 10.1002/nag.566

Keywords

surface crown pillar; neural networks; crown pillar stability

Ask authors/readers for more resources

A relatively novel technique, artificial neural networks (ANN), is used in predicting the stability of crown pillars left over large excavations. Data for the training and verification of the networks were obtained from the literature. Four artificial networks, based on two different architectures, were used. The networks used different numbers of input parameters to predict the stability or failure of crown pillars. Multi-layer perceptron networks using mine type, dip of orebody, overburden thickness, pillar thickness, pillar length, stope height, backfill height, Rock Mass Rating (RMR) of the host rock and RMR of the orebody showed excellent performance in training and verification. Adding three more variables, namely pillar width, rock density and pillar thickness to width ratio, showed symptoms of over-learning without degrading performance significantly. Radial basis function networks were capable of predicting crown pillar behaviour on the basis of few input functions. It was shown that mine type, dip and pillar thickness to width ratio can be used for a preliminary estimation of stability. Copyright (C) 2006 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available