4.6 Review

The three-dimensional equilibrium crystal shape of Pb: Recent results of theory and experiment

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 87, Issue 3, Pages 391-397

Publisher

SPRINGER
DOI: 10.1007/s00339-007-3951-7

Keywords

-

Ask authors/readers for more resources

The three-dimensional equilibrium crystal shape (ECS) is constructed from a set of 35 orientation-dependent surface energies of fcc Pb which are calculated by density functional theory in the local-density approximation and distributed over the [110] and [001] zones of the stereographic triangle. Surface relaxation has a pronounced influence on the equilibrium shape. The (111), (100), (110), (211), (221), (411), (665), (15,1,1), (410) and (320) facets are present after relaxation of all considered surfaces, while only the low-index facets (111), (100) and (110) exist for the unrelaxed ECS. The result for the relaxed Pb crystal state is in support of the experimental ECS of Pb at 320-350 K. On the other hand, approximating the surface energies of vicinal surfaces by assuming a linear relationship between the Pb(111) first-principles surface energy and the number of broken bonds of surface atoms leads to a trivial ECS that shows only (111) and (100) facets, with a sixfold symmetric (111) facet instead of the correct threefold symmetry. It is concluded that the broken bond rule in this simple linear form is not a suitable approximation for obtaining the proper three-dimensional ECS and correct step formation energies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available