4.4 Article

Dynamic interaction of point vortices and a two-dimensional cylinder

Journal

JOURNAL OF MATHEMATICAL PHYSICS
Volume 48, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2425100

Keywords

-

Ask authors/readers for more resources

In this paper we consider the system of an arbitrary two-dimensional cylinder interacting with point vortices in a perfect fluid. We present the equations of motion and discuss their integrability. Simulations show that the system of an elliptic cylinder (with nonzero eccentricity) and a single point vortex already exhibits chaotic features and the equations of motion are nonintegrable. We suggest a Hamiltonian form of the equations. The problem we study here, namely, the equations of motion, the Hamiltonian structure for the interacting system of a cylinder of arbitrary cross-section shape, with zero circulation around it, and N vortices, has been addressed by Shashikanth [Regular Chaotic Dyn. 10, 1 (2005)]. We slightly generalize the work by Shashikanth by allowing for nonzero circulation around the cylinder and offer a different approach than that by Shashikanth by using classical complex variable theory. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available