4.5 Article Proceedings Paper

Oxygen-evolving extrinsic proteins (PsbO,P,Q,R): Bioinformatic and functional analysis

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1767, Issue 6, Pages 575-582

Publisher

ELSEVIER
DOI: 10.1016/j.bbabio.2007.01.018

Keywords

oxygen-evolving complex; photosystem II complex; PsbO; PsbP; PsbQ; PsbR; protein structure; protein evolution; bioinformatics

Ask authors/readers for more resources

The water-splitting and oxygen-evolving (OE) reaction is carried out by a large multisubunit protein complex, Photosystem II (PSII), that has two distinct regions: a membrane intrinsic-region that includes most of the PSII subunits and a lumenal extrinsic-region that is in close association to the manganese catalytic center. The recently determined PSII 3D structures from cyanobacteria provide a considerable amount of new knowledge about the OE architecture (K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science 303 (2004) 1831-1838; B. Loll, J. Kern, W Saenger, A. Zouni, J. Biesiadka, Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature 438 (2005) 1040-1044). Most of the intrinsic core PSII polypeptides have been well conserved through evolution from ancient cyanobacteria to modem plants, keeping the essence of PSII light driven reactions from prokaryotes to eukaryotes; but what is striking is the large number of changes that have occurred in the oxygen-evolving extrinsic proteins (OEEp) associated to PSII lumenal side. For unknown reasons plant PSII has required the invention of three OEEps: PsbP (23 kDa), PsbQ (16 kDa) and PsbR (10 kDa); associated to the ubiquitous OEEp PsbO (33 kDa). This set of proteins seems to be required in plants for the full activity and stability of the OE center in vivo, but their specific function is not clear. In this paper, bioinformatics and functional data show that the OEEps present in plants and green algae are very distinct from their prokaryotic counterparts. Moreover, clear differences are found for PsbQ from higher plants and green algae; and a relationship has been found between PsbR and the Mn cluster. (c) 2007 Elsevier B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available