4.8 Article

Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions

Journal

NATURE PHYSICS
Volume 3, Issue 6, Pages 415-419

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys597

Keywords

-

Ask authors/readers for more resources

Two-dimensional (2D) NMR is an important tool for elucidating molecular structure and dynamics(1). However, the method is limited by the low sensitivity inherent to NMR techniques, resulting in typical acquisition times for 2D NMR spectra ranging from minutes to hours. A number of hyperpolarization techniques have been explored to boost NMR's sensitivity, including an ex situ dynamic nuclear polarization method capable of yielding - for an array of molecules and under conventional observation conditions for liquid samples signals that exceed those currently afforded by the highest field spectrometers by several orders of magnitude(2). Whereas this methodology is able to provide the sensitivity equivalent of similar to 10(6) scans, it is constrained to extract its 'super-spectrum' within a single transient, making it a poor starting point for conventional 2D NMR acquisitions. Here, we show that if the ex situ dynamic nuclear polarization approach is suitably merged with spatially encoded ultrafast NMR spectroscopy(3), 2D NMR spectra of liquid samples at submicromolar concentrations can be acquired within similar to 0.1 s.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available