4.7 Article

Comparison of natural and manufactured fine aggregates in cement mortars

Journal

CEMENT AND CONCRETE RESEARCH
Volume 37, Issue 6, Pages 924-932

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2007.03.009

Keywords

aggregate; mortar; mechanical properties

Ask authors/readers for more resources

The performance of cement mortars using manufactured fine aggregates produced by cone crushing or impact crushing has been compared to that of mortars prepared from a natural sand control-sample. Samples from both crusher products have been additionally subjected to classification for partial removal of fines, being also used in preparing mortars. Particle shape analyses indicated that material produced by impact crushing presented intermediate sphericity and aspect ratio, between those found in natural tine aggregate and cone-crushed material, and that the aspect ratio of the cone-crushed material increased for finer particle sizes. The unclassified impact crusher product presented the highest packing density, and mortars produced from it had comparatively low porosity and low absorptivity and the highest unconfined compressive strength. The classified product from cone crushing presented low packing density and mortars were characterized by the highest porosities, absorptivities and lowest unconfined compressive strength, probably mostly due to its poor particle shapes. Modeling of the stress-strain response with scalar damage mechanics showed that manufactured aggregate produced from classification of the cone crusher yielded a mortar with highly inelastic deformation response, whereas mortars produced from unclassified product of impact crushing showed more elastic deformation response. Results were also analyzed in light of de Larrard's Compressible Packing Model. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available