4.3 Article

Reduced embryo sensitivity to abscisic acid in a sprouting-susceptible sorghum (Sorghum bicolor) variety is associated with altered ABA signalling

Journal

SEED SCIENCE RESEARCH
Volume 17, Issue 2, Pages 81-90

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0960258507708115

Keywords

abscisic acid; abscisic acid sensitivity; abscisic acid signalling; germination; pre-harvest sprouting; seed dormancy; Sorghum bicolor

Categories

Ask authors/readers for more resources

In the work reported in this paper, we attempted to elucidate the nature of the different abscisic acid (ABA) sensitivities presented by developing embryos from sorghum [Sorghum bicolor (L.) Moench] lines with contrasting pre-harvest sprouting (PHS) behaviour (Redand B2, susceptible, IS 9530, resistant). We explored two different hypotheses for a possible mechanism: (1) a different functionality of the ABA signalling pathway, and (2) a different rate of ABA degradation/conjugation in the apoplast of embryos from these genotypes. To assess the first possibility, we used an ABA-responsive gene (Rab17) as a reporter of changes in endogenous ABA content, which were artificially induced in embryos from both genotypes by means of fluriclone application immediately after anthesis, to reduce ABA content, and embryo incubation in the presence of ABA. A defect in ABA signalling should be seen as a level of Rab17 expression that is independent of endogenous ABA content. For testing the second possibility at two stages of development, embryos from both lines were isolated and incubated in water for different periods. ABA concentrations in embryos and the incubation media were quantified through radioimmunoassay. In contrast to our findings for the resistant IS 9530 line, Rab 17 expression did not respond to changes in ABA levels in sensitive Redland B2 embryos. The ABA degraclation/conjugation rates in embryos and incubation media did not show clear differences between sorghum lines for any of the developmental stages analysed. These results suggest that a disruption in the ABA signal transduction pathway in Redland B2 underlies the low ABA sensitivity shown by embryos from this line.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available