4.3 Review

Fluorescence Detection of Potassium Ion Using the G-Quadruplex Structure

Journal

ANALYTICAL SCIENCES
Volume 27, Issue 12, Pages 1167-1172

Publisher

JAPAN SOC ANALYTICAL CHEMISTRY
DOI: 10.2116/analsci.27.1167

Keywords

-

Funding

  1. Grants-in-Aid for Scientific Research [22550154] Funding Source: KAKEN

Ask authors/readers for more resources

Oligonucleotides with sequences of human telomere DNA or thrombin binding aptamer (TBA) are known to form tetraplex structures upon binding the K(+) ion. Structural changes associated with the formation of tetraplex assemblies led to the development of potassium-sensing oligonucleotide (PSO) probes, in which two fluorescent dyes were attached to both termini of particular oligonucleotide. The combination of dyes included fluorescence resonance energy transfer (FRET) and excimer emission approaches, and the structural changes upon binding K(+) ion could be monitored by a fluorescence technique. These systems showed a very high preference for K(+) over Na(+) ion, which was suitable for fluorescence imaging of the potassium concentration gradient in a living cell. In the case of human telomere DNA, it was also possible to follow the polymorphism of its tetraplex structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available