4.3 Article

Role of polarization and alignment in photoactuation of nematic elastomers

Journal

EUROPEAN PHYSICAL JOURNAL E
Volume 23, Issue 2, Pages 185-189

Publisher

SPRINGER
DOI: 10.1140/epje/i2007-10170-y

Keywords

-

Ask authors/readers for more resources

Changing the orientational order in liquid-crystal elastomers leads to internal stresses and changes of the sample shape. When this effect is induced by light, due to photoisomerization of constituent molecular moieties, the photomechanical actuation results. We investigate quantitatively how the intensity and the polarization of light affect photoactuation. By studying dissolved, as well as covalently bonded azo-dyes, we determine the changes in absorption and the response kinetics. For the first time we compare the response of aligned monodomain, and randomly disordered polydomain nematic elastomers, and demonstrate that both have a comparable photoresponse, strongly dependent on the polarization of light. Polarization-dependent photoactuation in polydomain elastomers gives an unambiguous proof of its mechanism since it is the only experiment that distinguishes from the associated thermal effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available