4.3 Article Proceedings Paper

Assessment of complex EMF exposure situations including inhomogeneous field distribution

Journal

HEALTH PHYSICS
Volume 92, Issue 6, Pages 531-540

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.HP.0000250620.32459.4c

Keywords

electromagnetic fields; exposure, occupational; exposure, radiofrequency; radiation, non-ionizing

Ask authors/readers for more resources

Assessment of exposure to time varying electric and magnetic fields is difficult when the fields are non-uniform or very localized. Restriction of the local spatial peak value below the reference level may be too restrictive. Additional problems arise when the fields are not sinusoidal. The objective of this review is to present practical measurement procedures for realistic and not too conservative exposure assessment for verification of compliance with the exposure guidelines of ICNIRP. In most exposure situations above 10 MHz the electric field (E) is more important than the magnetic field (B). At frequencies above 500 MHz the equivalent electric field power density averaged over the body is the most relevant indicator of exposure. Assessment of specific absorption rate (SAR) is not needed when the spatial peak value does not exceed by 6 dB the average value. Below 50 MHz down to 50 Hz, the electric field induces currents flowing along the limbs and torso. The current is roughly directly proportional to the electric field strength averaged over the body. A convenient way to restrict current concentration and hot spots in the neck, ankle and wrist, is to measure the current induced in the body. This is not possible for magnetic fields. Instead, for a non-uniform magnetic field below 100 kHz the average magnetic flux density over the whole body and head are valid exposure indicators to protect the central nervous system. The first alternative to analyze exposure to non-sinusoidal magnetic fields below 100 kHz is based on the spectral comparison of each component to the corresponding reference level. In the second alternative the waveform of B or dBldt is filtered in the time domain with a simple filter, where the attenuation varies proportionally to the reference level as a function of frequency, and the filtered peak value is compared to the peak reference level derived from the ICNIRP reference levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available