4.5 Article

A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1

Journal

BIOCHEMICAL JOURNAL
Volume 404, Issue -, Pages 289-298

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20061900

Keywords

acetylation; chromatin; mastermind-like protein-1 (MAML1); Notch; p300; transcription

Ask authors/readers for more resources

Ligand activation of Notch leads to the release of Notch IC (the intracellular receptor domain), which translocates to the nucleus and interacts with the DNA-binding protein CSL to control expression of specific target genes. In addition to ligand-mediated activation, Notch signalling can be further modulated by interactions of Notch IC with a number of other proteins. MAML1 has previously been shown to act co-operatively with the histone acetyltransferase p300 in Notch IC-mediated transcription. In the present study we show that the N-terminal domain of MAML1 directly interacts with both p300 and histones, and the p300-MAML1 complex specifically acetylates histone H3 and H4 tails in chromatin. Furthermore, p300 acetylates MAML1 and evolutionarily conserved lysine residues in the MAML1 N-terminus are direct substrates for p300-mediated acetylation. The N-terminal domain of MAML1 contains a proline repeat motif (PXPAAPAP) that was previously shown to be present in p53 and important for the p300-p53 interaction. We show that the MAML1 proline repeat motif interacts with p300 and enhances the activity of the MAML1 N-terminus in vivo. These findings suggest that the N-terminal domain of MAML1 plays an important role in Notch-regulated transcription, by direct interactions with Notch, p300 and histones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available