4.7 Article

Seizure suppression by GDNF gene therapy in animal models of epilepsy

Journal

MOLECULAR THERAPY
Volume 15, Issue 6, Pages 1106-1113

Publisher

CELL PRESS
DOI: 10.1038/sj.mt.6300148

Keywords

-

Ask authors/readers for more resources

Temporal lobe epilepsy patients remain refractory to available anti-epileptic drugs in 30% of cases, indicating a need for novel therapeutic strategies. In this context, glial cell line-derived neurotrophic factor ( GDNF) emerges as a possible new agent for epilepsy treatment. However, a limited number of studies, use of different epilepsy models, and different methods of GDNF delivery preclude understanding of the mechanisms for the seizure-suppressant action of GDNF. Here we show that recombinant adeno-associated viral (rAAV) vector-based GDNF overexpression in the rat hippocampus suppresses seizures in two models of temporal lobe epilepsy. First, when rAAV-GDNF was injected before hippocampal kindling, the number of generalized seizures decreased, and the prolongation of behavioral convulsions in fully kindled animals was prevented. Second, injection of rAAV-GDNF after kindling increased the seizure induction threshold. Third, rAAV-GDNF decreased the frequency of generalized seizures during the self-sustained phase of status epilepticus. Our data demonstrate the complexity of mechanisms and the beneficial action of GDNF in epilepsy. Furthermore, we show that ectopic rAAV-mediated GDNF gene expression in the seizure focus is a feasible way to mitigate seizures and provides proof of principle that the neurotrophic factor-based gene therapy approach has the potential to be developed as alternative strategy for epilepsy treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available