4.6 Article

Effect of lycopene on insulin-like growth factor-I, IGF binding protein-3 and IGF type-I receptor in prostate cancer cells

Journal

JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY
Volume 133, Issue 6, Pages 351-359

Publisher

SPRINGER
DOI: 10.1007/s00432-006-0177-6

Keywords

lycopene; IGFBP-3; IGF-I; IGF-IR; prostate cancer

Categories

Ask authors/readers for more resources

Purpose Prostate cancer is the second most common cancer that leads to death in elderly men. The risk of prostate cancer prevalence is often associated with the elevated level of insulin-like growth factor-I (IGF-I) and decreased level of IGF-binding protein 3 (IGFBP-3). Lycopene, a carotenoid, reduces the proliferation of cancer cells and induces apoptosis. Hence, higher intake of lycopene can be associated with the lower risk of prostate cancer. However, the mechanism of action of lycopene in the prevention of prostate cancer is still unclear. The present study was carried out to study the effects of lycopene on the components of IGF system and apoptosis in androgen-independent prostate cancer cells (PC-3 cells). Methods PC-3 cells were treated with various concentrations of lycopene, (20, 40 and 60 mu M) for 24, 48, 72 and 96 h. IGF-I, IGFBP-3 and IGF-I receptor (IGF-IR) levels in lycopene-treated cells were evaluated. Annexin V and propidium iodide (PI) binding studies were done to assess apoptosis. Results PC-3 cells treated with lycopene showed a significant decrease in cell proliferation. Lycopene, at a dose of 40 mu M, significantly increased the level of IGFBP-3. Lycopene-induced apoptosis was confirmed by annexin V and PI binding. Lycopene-induced DNA fragmentation was absent after 24 h treatment whereas the same was observed after 48 h treatment. There was a significant decrease in the IGF-IR expression after the cells were treated with lycopene and IGF-I. Conclusion The data obtained suggest that the components of the IGF system may act as a positive regulator of lycopene-induced apoptosis in PC-3 cells. Thus, the observed lycopene-induced biological effects and their associated mechanisms are encouraging and may lead to the development of a highly successful drug for the treatment of prostate cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available