4.5 Article Proceedings Paper

Action potential in a plant cell lowers the non-photochemical energy-dependent quenching light requirement for of chlorophyll fluorescence

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1767, Issue 6, Pages 781-788

Publisher

ELSEVIER
DOI: 10.1016/j.bbabio.2007.01.004

Keywords

chlorophyll fluorescence; action potential; energy-dependent quenching

Ask authors/readers for more resources

This study deals with effects of membrane excitation on photosynthesis and cell protection against excessive light, manifested in non-photochemical quenching (NPQ). In Chara corallina cells, NPQ and pericellular pH displayed coordinated spatial patterns along the length of the cell. The NPQ values were lower in H+-extruding cell regions (external pH similar to 6.5) than in high pH regions (pH similar to 9.5). Generation of an action potential by applying a pulse of electric current caused NPQ to increase within 30-60 s. This effect, manifested as a long-lived drop of maximum chlorophyll fluorescence (F-m'), occurred at lower photosynthetic flux densities (PFD) in the alkaline as compared to acidic cell regions. The light response curve of NPQ shifted, after generation of an action potential, towards lower PFD. The release of NPQ by nigericin and the rapid reversal of action potential-triggered NPQ in darkness indicate its relation to thylakoid Delta pH. Generation of an action potential shortly after darkening converted the chloroplasts into a latent state with the F-m identical to that of unexcited cells. This state transformed to the quenched state after turning on weak light that was insufficient for NPQ prior to membrane excitation of the cells. The ionophore, A23187, shifted NPQ plots similarly to the action potential effect, consistent with a likely role of a rise in the cytosolic Ca2+ level in the action potential-induced quenching. The results suggest that a rapid electric signal, across the plasma membrane, might exert long-lived effects on photosynthesis and chlorophyll fluorescence through ion flux-mediated pathways. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available