4.6 Article

Linear scaling electronic structure Monte Carlo method for metals

Journal

PHYSICAL REVIEW B
Volume 75, Issue 23, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.235108

Keywords

-

Ask authors/readers for more resources

We present a method for sampling the Boltzmann distribution of a system in which the interionic interactions are derived from empirical or semiempirical electronic structure calculations within the Born-Oppenheimer approximation. We considerably improve on a scheme presented earlier [F. R. Krajewski and M. Parrinello, Phys. Rev. B 73, 041105(R) (2006)]. To this effect, we use an expression for the partition function in which electronic and ionic degrees of freedom are treated on the same footing. In addition, we introduce an auxiliary set of fields in such a way that the sampling of the partition function scales linearly with system size. We demonstrate the validity of this approach on tight-binding models of carbon nanotubes and silicon in its liquid and crystalline phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available