3.9 Article

Direct interactions with Gαi and Gβγ mediate nongenomic signaling by estrogen receptor α

Journal

MOLECULAR ENDOCRINOLOGY
Volume 21, Issue 6, Pages 1370-1380

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2006-0360

Keywords

-

Funding

  1. NICHD NIH HHS [HD30276] Funding Source: Medline
  2. NIGMS NIH HHS [GM34497] Funding Source: Medline

Ask authors/readers for more resources

Estrogen induces G protein-dependent nongenomic signaling in a variety of cell types via the activation of a plasma membrane-associated subpopulation of estrogen receptor alpha (ER alpha). Using pull-down experiments with purified recombinant proteins, we now demonstrate that ER alpha binds directly to G alpha i and G beta gamma. Mutagenesis and the addition of blocking peptide reveals that this occurs via amino acids 251-260 and 271-595 of ER alpha, respectively. Studies of ER alpha complexed with heterotrimeric G proteins further show that estradiol causes the release of both G alpha i and G beta gamma without stimulating GTP binding to G alpha i. Moreover, in COS-7 cells, the disruption of ER alpha-G alpha i interaction by deletion mutagenesis of ER alpha or expression of blocking peptide, as well as G beta gamma sequestration with beta-adrenergic receptor kinase C terminus, prevents nongenomic responses to estradiol including src and erk activation. In endothelial cells, the disruption of ER alpha-G alpha i interaction prevents estradio-induced nitric oxide synthase activation and the resulting attenuation of monocyte adhesion that contributes to estrogen-related cardiovascular protection. Thus, through direct interactions, ER alpha mediates a novel mechanism of G protein activation that provides greater diversity of function of both the steroid hormone receptor and G proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available