4.7 Article

Effect of lateral heterogeneity on surface wave testing: Numerical simulations and a countermeasure

Journal

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
Volume 27, Issue 6, Pages 541-552

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.soildyn.2006.10.008

Keywords

surface wave; multi-channel analysis of surface wave; lateral heterogeneity

Ask authors/readers for more resources

The surface wave (S-wave) method has gained popularity in engineering practice for determining S-wave velocity depth profiles. A growing trend is towards the application of S-wave testing for spatially 2-D S-wave velocity tomography, ignoring the assumption of horizontally layered medium. A fourth-order velocity-stress finite difference method is used to perform numerical simulations of S-wave testing in earth models with lateral variation. Results show that the lateral heterogeneity induces a non-stationary property in the space domain, resulting in false depth-related dispersion or higher modes if conventional approach based on stationary assumption is used for the dispersion analysis. Artifacts maybe introduced in spatially 2-D S-wave velocity imaging if the effect of lateral heterogeneity is not accounted for. As a potential countermeasure, a high-lateral-resolution S-wave method is proposed to reduce the effect of lateral heterogeneity while maintaining the resolution and depth range of dispersion analysis. It consists of a walk-away survey and a phase-seaming procedure when synthesizing seismograms with different nearest source-to-receiver offset, allowing wide-wavelength dispersion analysis within a small spatial range. The proof of concept is given with several numerical examples. They show that the high-resolution S-wave method can greatly alleviate the effect of lateral heterogeneity and increase spatial resolution. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available