4.6 Article

Compressive stress effects on nanoparticle modulus and fracture

Journal

PHYSICAL REVIEW B
Volume 75, Issue 21, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.214112

Keywords

-

Ask authors/readers for more resources

Individual nanoparticles of silicon and titanium having diameters in the range of 40-140 nm have been repeatedly compressed by a nanoindenter. Even at low loads, the small tip-particle and particle-substrate contacts generate extreme pressures within the confined particle, influencing its stiffness and fracture toughness. The effect of these high pressures on the measured modulus is taken into account by invoking a Murnaghan equation-of-state-based analysis. Fracture toughness of the silicon particles is found to increase by a factor of 4 in compression for a 40-nm-diam particle when compared to bulk silicon. Additionally, strain energy release rates increase by more than an order of magnitude for particles of this size when compared to bulk Si.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available