4.5 Article

Time course of early metabolic changes following diffuse traumatic brain injury in rats as detected by 1H NMR spectroscopy

Journal

JOURNAL OF NEUROTRAUMA
Volume 24, Issue 6, Pages 944-959

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/neu.2006.0190

Keywords

brain edema; H-1-NMR spectroscopy; myo-inositol; organic osmolyte; taurine; traumatic brain injury

Ask authors/readers for more resources

Experimental models of traumatic brain injury (TBI) provide a useful tool for understanding the cerebral metabolic changes induced by this pathological condition. Here, we report on the time course of changes in cerebral metabolites after TBI and its correlation with early brain morphological changes using a combination of high-resolution proton magnetic resonance spectroscopy (H-1 MRS) and magnetic resonance imaging (MRI). Adult male Sprague-Dawley rats were subjected to closed head impact and examined by MRI at 1, 9, 24, 48, and and 72 h after the injury. Extracts from funnel frozen rat brains were then obtained and analyzed quantitatively by high-resolution 1H MRS. Finally, statistical multivariate analysis was carried out to identify the combination of cerebral metabolites that best described the time evolution of diffuse TBI. The temporal changes observed in the concentration of cerebral metabolites followed three different patterns. The first pattern included taurine, threonine, and glycine, with concentrations peaking 24 h after the injury. The second pattern included glutamate, GABA, and alanine, with concentrations remaining elevated between 24 and 48 h post-injury. The third one involved creatine-phosphocreatine, N-acetylaspartate, and myo-inositol, with concentrations peaking 48 h after the injury. A multivariate stepwise discriminant analysis revealed that the combination of the organic osmolytes taurine and myo-inositol allowed optimal discrimination among the different time groups. Our findings suggest that the profile of some specific brain molecules that play a role as organic osmolytes can be used to follow-up the progression of the early diffuse brain edema response induced by TBI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available