4.4 Article Proceedings Paper

MOD Buffer/YBCO approach to fabricate low-cost second generation HTS wires

Journal

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
Volume 17, Issue 2, Pages 3332-3335

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASC.2007.899636

Keywords

chemical solution deposition; electron microscopy; high temperature superconductors; transport property measurements; x-ray measurements

Ask authors/readers for more resources

The metal organic deposition (MOD) of buffer layers on RABiTS substrates is considered a potential, low-cost approach to manufacturing high performance Second Generation (2G) high temperature superconducting (HTS) wires. The typical architecture used by American Superconductor in their 2G HTS wire consists of a Ni-W (5 at.%) substrate with a reactively sputtered Y2O3 seed layer, YSZ barrier layer and a CeO2 cap layer. This architecture supports critical currents of over 300 A/cm-width (77 K, self-field) with 0.8 mu m YBCO films deposited by the TFA-MOD process. The main challenge in the development of the MOD buffers is to match or exceed the performance of the standard vacuum deposited buffer architecture. We have recently shown that the texture and properties of MOD - La2Zr2O7 (LZO) barrier layers can be improved by inserting a thin sputtered Y2O3 seed layer and prepared MOD deposited LZO layers followed by MOD or RF sputtered CeO2 cap layers that support MOD-YBCO films with I-c's of 200 and 255 A/cm-width, respectively. Detailed X-ray and microstructural characterizations indicated that MOD - CeO2 cap reacted completely with MOD YBCO to form BaCeO3. However, sputtered CeO2 cap/MOD YBCO interface remains clean. By further optimizing the coating conditions and reducing the heat-treatment temperatures, we have demonstrated an I-c of 336 A/cm with improved LZO layers and sputtered CeO2 cap and exceeded the performance of that of standard vacuum deposited buffers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available