4.8 Article

Neomycin prevents enzyme-mediated glycosaminoglycan degradation in bloprosthetic heart valves

Journal

BIOMATERIALS
Volume 28, Issue 18, Pages 2861-2868

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.02.017

Keywords

neomycin; hexosamine; GAGs; porcine aortic valves; valve fixation

Funding

  1. NHLBI NIH HHS [HL70969, R01 HL070969, R01 HL070969-01A2] Funding Source: Medline

Ask authors/readers for more resources

Bioprosthetic heart valves (BHVs) derived from glutaraldehyde crosslinked porcine aortic valves are frequently used in heart valve replacement surgeries. However, BHVs have limited durability and fail either due to degeneration or calcification. Glycosaminoglycans (GAGs), one of the integral components of heart valve cuspal tissue, are not stabilized by conventional glutaraldehyde crosslinking. Previously we have shown that valvular GAGs could be chemically fixed with GAG-targeted chemistry. However, chemically stabilized GAGs were only partially stable to enzymatic degradation. In the present study an enzyme inhibitor was incorporated in the cusps to effectively prevent enzymatic degradation. Thus, neomycin trisulfate, a known hyaluronidase inhibitor, was incorporated in cusps via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry followed by glutaraldehyde crosslinking (NEG). Controls included cusps crosslinked with either EDC/NHS followed by glutaraldehyde (ENG) or only with glutaraldehyde (GLUT). NEG group showed improved resistance to in vitro enzymatic degradation as compared to GLUT and ENG groups. All groups showed similar collagen stability, measured as a thermal denaturation temperature by differential scanning calorimetry (DSC). The cusps were implanted subdermally in rats to study in vivo degradation of GAGs. NEG group preserved significantly more GAGs than ENG and GLUT. NEG and ENG groups showed reduced calcification than GLUT. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available