4.6 Article

On-line UV photoreduction in a flow-injection/stopped-flow manifold for determination of mercury by cold vapour-atomic absorption spectrometry

Journal

ANALYTICAL METHODS
Volume 2, Issue 11, Pages 1798-1802

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ay00326c

Keywords

-

Funding

  1. Spanish Ministry of Science and Innovation [CTQ2006-04111/BQU, CTQ2009-06956/BQU]
  2. Vigo University [09VIA08]

Ask authors/readers for more resources

Photo-chemical vapour generation has been applied in a flow-injection system under stopped-flow conditions for determination of Hg by atomic absorption spectrometry. The system allows mercury vapour generation without the need for conventional reduction reactions based on sodium/potassium tetrahydroborate (III) or tin chloride in acid medium. The photo-induced reaction is accomplished by applying ultraviolet irradiation (UV) to the sample solution containing Hg(II) in the presence of an organic acid (i.e., acetic, citric, oxalic, ethylendiaminetetraacetic) as precursor of reducing species. A remarkable improvement in sensitivity is observed with acetic acid when stopped-flow is employed as compared to continuous operation, meaning that kinetics play an important role in the photo-induced reaction. A detection limit of 0.3 mu g L-1 can be obtained, which represents a 6-fold improvement in respect to that obtained without stopped-flow. The repeatability expressed as relative standard deviation was about 2.7% (n = 15) for a 50 mu g L-1 Hg standard. The effect of potential interferences on the photo-generation of Hg vapour was investigated. In the UV-photo-induced CVG, both inorganic Hg and organomercury species can be reduced to elemental mercury with the same efficiency. The method was applied to determination of Hg in several enriched natural water samples and recoveries of MeHg+, Thiomersal, EtHg+ and PhHg+ were in the range 97% to 102%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available