4.6 Article

Biomechanical Consequences of a Nonanatomic Posterior Medial Meniscal Root Repair

Journal

AMERICAN JOURNAL OF SPORTS MEDICINE
Volume 43, Issue 4, Pages 912-920

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0363546514566191

Keywords

meniscal tear; root tear; meniscal root repair; anatomic

Funding

  1. Steadman Philippon Research Institute

Ask authors/readers for more resources

Background: Posterior medial meniscal root tears have been reported to extrude with the meniscus becoming adhered posteromedially along the posterior capsule. While anatomic repair has been reported to restore tibiofemoral contact mechanics, it is unknown whether nonanatomic positioning of a meniscal root repair to a posteromedial location would restore the loading profile of the knee joint. Purpose/Hypothesis: The purpose of this study was to compare the tibiofemoral contact mechanics of a nonanatomic posterior medial meniscal tear with that of the intact knee or anatomic repair. It was hypothesized that a nonanatomic root repair would not restore the tibiofemoral contact pressures and areas to that of the intact or anatomic repair state. Study Design: Controlled laboratory study. Methods: Tibiofemoral contact mechanics were recorded in 6 male human cadaveric knee specimens (average age, 45.8 years) using pressure sensors. Each knee underwent 5 testing conditions for the posterior medial meniscal root: (1) intact knee; (2) root tear; (3) anatomic transtibial pull-out repair; (4) nonanatomic transtibial pull-out repair, placed 5 mm posteromedially along the edge of the articular cartilage; and (5) root tear concomitant with an ACL tear. Knees were loaded with a 1000-N axial compressive force at 4 flexion angles (0 degrees, 30 degrees, 60 degrees, 90 degrees), and contact area, mean contact pressure, and peak contact pressure were calculated. Results: Contact area was significantly lower after nonanatomic repair than for the intact knee at all flexion angles (mean = 44% reduction) and significantly higher for anatomic versus nonanatomic repair at all flexion angles (mean = 27% increase). At 0 degrees and 90 degrees, and when averaged across flexion angles, the nonanatomic repair significantly increased mean contact pressures in comparison to the intact knee or anatomic repair. When averaged across flexion angles, the peak contact pressures after nonanatomic repair were significantly higher than the intact knee but not the anatomic repair. In contrast, when averaged across all flexion angles, the anatomic repair resulted in a 17% reduction in contact area and corresponding increases in mean and peak contact pressures of 13% and 26%, respectively, compared with the intact knee. Conclusion: For most testing conditions, the nonanatomic repair did not restore the contact area or mean contact pressures to that of the intact knee or anatomic repair. However, the anatomic repair produced near-intact contact area and resulted in relatively minimal increases in mean and peak contact pressures compared with the intact knee. Clinical Relevance: Results emphasize the importance of ensuring an anatomic posterior medial meniscal root repair by releasing the extruded menisci from adhesions and the posteromedial capsule. Similar caution toward preventing displacement of the meniscal root repair construct should be emphasized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available