4.6 Article

Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 42, Issue 11, Pages 3789-3799

Publisher

SPRINGER
DOI: 10.1007/s10853-006-0413-0

Keywords

-

Ask authors/readers for more resources

The incorporation of silica nanoparticles into polyethylene has been shown to increase the breakdown strength significantly compared to composites with micron scale fillers. Additionally, the voltage endurance of the nanocomposites is two orders of magnitude higher than that of the base polymer. The most significant difference between micron-scale and nano-scale fillers is the large interfacial area in nanocomposites. Because the interfacial region (interaction zone) is likely to be pivotal in controlling properties, this paper compares the behavior of nanoscale silica/ cross-linked low density polyethylene nanocomposites with several silica surface treatments. In addition to breakdown strength and voltage endurance, dielectric spectroscopy, absorption current measurements, and thermally stimulated current determinations (TSC) were performed to elucidate the role of the interface. It was found that a reduction in the mobility in nanocomposites as well as a change in the defect size may be key to explaining the improvement in the properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available