4.4 Article

CHEMOMETRIC TECHNIQUES APPLIED FOR CLASSIFICATION AND QUANTIFICATION OF BINARY BIODIESEL/DIESEL BLENDS

Journal

ANALYTICAL LETTERS
Volume 45, Issue 16, Pages 2398-2411

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/00032719.2012.686135

Keywords

Biodiesel; Chemometrics techniques; ESI-MS; NIR

Ask authors/readers for more resources

In this paper, three different types of biodiesel, which were synthesized from peanut, corn, and canola oils, were characterized by positive-ion electrospray ionization (ESI) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Different biodiesel/diesel blends containing 2-90% (V/V) of each biodiesel type were prepared and analyzed by near infrared spectroscopy (NIR). In the next step, the chemometric methods of hierarchical clusters analysis (HCA), principal component analysis (PCA), and support vector machines (SVM) were used for exploratory analysis of the different biodiesel samples, and the SVM was able to give the best classification results (correct classification of 50 peanut and 50 corn samples, and only one misclassification out of 49 canola samples). Then, partial least squares (PLS) and multivariate adaptive regression splines (MARS) models were evaluated for biodiesel quantification. Both methods were considered equivalent for quantification purposes based on the values smaller than 5% for the root mean square error of calibration (RMSEC) and root mean square of validation (RMSEP), as well as Pearson correlation coefficients of at least 0.969. The combination of NIR to the chemometric techniques of SVM and PLS/MARS was proven to be appropriate to classify and quantify biodiesel from different origins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available