4.7 Article

Differential neural coding of acoustic flutter within primate auditory cortex

Journal

NATURE NEUROSCIENCE
Volume 10, Issue 6, Pages 763-771

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1888

Keywords

-

Categories

Funding

  1. NIDCD NIH HHS [DC 03180, F31 DC006528, F31 DC 006528, R01 DC003180] Funding Source: Medline

Ask authors/readers for more resources

A sequence of acoustic events is perceived either as one continuous sound or as a stream of temporally discrete sounds (acoustic flutter), depending on the rate at which the acoustic events repeat. Acoustic flutter is perceived at repetition rates near or below the lower limit for perceiving pitch, and is akin to the discrete percepts of visual flicker and tactile flutter caused by the slow repetition of sensory stimulation. It has been shown that slowly repeating acoustic events are represented explicitly by stimulus-synchronized neuronal firing patterns in primary auditory cortex (AI). Here we show that a second neural code for acoustic flutter exists in the auditory cortex of marmoset monkeys (Callithrix jacchus), in which the firing rate of a neuron is a monotonic function of an acoustic event's repetition rate. Whereas many neurons in AI encode acoustic flutter using a dual temporal/rate representation, we find that neurons in cortical fields rostral to AI predominantly use a monotonic rate code and lack stimulus-synchronized discharges. These findings indicate that the neural representation of acoustic flutter is transformed along the caudal-to-rostral axis of auditory cortex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available