4.2 Article

A dual altered peptide ligand inhibits myasthenia gravis associated responses by inducing phosphorylated extracellular-regulated kinase 1,2 that upregulates CD4+CD25+Foxp3+ cells

Journal

SCANDINAVIAN JOURNAL OF IMMUNOLOGY
Volume 65, Issue 6, Pages 567-576

Publisher

WILEY
DOI: 10.1111/j.1365-3083.2007.01940.x

Keywords

-

Categories

Ask authors/readers for more resources

Myasthenia gravis (MG) and its animal model experimental autoimmune MG (EAMG), are T-cell dependent, antibody-mediated autoimmune disorders. A dual altered peptide ligand (APL) composed of the tandemly arranged two single amino acids analogs of two myasthenogenic peptides, p195-212 and p259-271, was demonstrated to downregulate, in vitro and in vivo, MG-associated autoimmune responses. Upregulation of regulatory CD4(+)CD25(+) cells plays a key role in the mechanism of action of the dual APL. The objectives of the present study were to address the involvement of extracellular-regulated kinase (ERK)1,2 in the mechanisms by which the dual APL-induced CD4(+)CD25(+) cells suppress MG-associated autoimmune responses. We demonstrate here that administration of the dual APL increased activated ERK1,2 in the CD4(+)CD25(+)-enriched population. Further, inhibition of ERK1,2 by its inhibitor, U0126, in dual APL-induced CD4(+)CD25(+) cells, abrogated their ability to suppress interferon (IFN)-gamma secretion by lymph node (LN) cells of mice that were immunized with the myasthenogenic peptide. Moreover, inhibition of ERK1,2 in the dual APL-induced regulatory CD4(+)CD25(+) cells, resulted in downregulation of the forkhead box p3 (Foxp3) gene and protein expression levels, as well as in the downregulation of CD4(+)CD25(+) development, suggesting that the active suppression exerted by the dual APL via CD4(+)CD25(+) cells depends on ERK1,2 activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available