4.5 Article

CONTROLS ON TRACE METAL AUTHIGENIC ENRICHMENT IN REDUCING SEDIMENTS: INSIGHTS FROM MODERN OXYGEN-DEFICIENT SETTINGS

Journal

AMERICAN JOURNAL OF SCIENCE
Volume 315, Issue 2, Pages 77-119

Publisher

AMER JOURNAL SCIENCE
DOI: 10.2475/02.2015.01

Keywords

reducing sediments; trace metals; authigenic enrichment; euxinia; ocean redox; mass balance

Funding

  1. NERC studentship [NE/H525111/1]
  2. NSF award [9617929]
  3. Peru Margin sample collection
  4. NSF-EAR
  5. Directorate For Geosciences
  6. Division Of Earth Sciences [1124327, 1338299] Funding Source: National Science Foundation
  7. Division Of Ocean Sciences
  8. Directorate For Geosciences [1234778] Funding Source: National Science Foundation
  9. Division Of Ocean Sciences
  10. Directorate For Geosciences [9617929] Funding Source: National Science Foundation

Ask authors/readers for more resources

Any effort to reconstruct Earth history using variations in authigenic enrichments of redox-sensitive and biogeochemically important trace metals must rest on a fundamental understanding of their modern oceanic and sedimentary geochemistry. Further, unravelling the multiple controls on sedimentary enrichments requires a multi-element approach. Of the range of metals studied, most is known about the behavior of Fe, Mn, and Mo. In this study, we compare the authigenic enrichment patterns of these elements with a group whose behavior is not as well defined (Cd, Cu, Zn, and Ni) in three oxygen-poor settings: the Black Sea, the Cariaco Basin (Venezuela), and the Peru Margin. These three settings span a range of biogeochemical environments, allowing us to isolate the different controls on sedimentary enrichment. Our approach, relying on the covariation of elemental enrichment factors [EF, defined for element X as: EFx = (X/Al)(sample)/(X/Al)(lithogenic)], has previously been applied to Mo and U to elucidate paleoenvirmmiental information on, for example, benthic redox conditions, the particulate shuttle, and the evolution of water mass chemistry. We find two key controls on trace metal enrichment. First, the concentration of an element in the lithogenic background sediment (used in calculating EFx) controls the magnitude of potential enrichment. Maximum enrichment factors of 376 and 800 are calculated for Mo (similar to 1 ppm in detrital sediments) and Cd (similar to 0.3 ppm), respectively, compared to values not greater than 17 in any setting for the other five metals (similar to 45 ppm to similar to 4.5 wt.% in detrital sediments). Second, there is a relationship between the aqueous concentration of the element in overlying seawater and its degree of enrichment in the sediment. We further identify four important processes for delivery of trace metals to the sediment. These are: (1) cellular uptake (especially important for Zn and Cd), (2) interaction/co-precipitation with sulfide (Mo, Cu, and Cd), (3) passive scavenging via the traditional particulate shuttle (Mo, Ni, and Cu), and (4) an association with the benthic Fe redox shuttle (Mn, Ni). Finally, we summarize the oceanic mass balance of Cd and Mo and place the first constraints on the contribution of reducing sediments to the oceanic mass balance of Cu, Zn, and Ni. We show that reducing sediments are the ultimate repository for up to half the total output flux of these elements from the oceanic dissolved pool.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available