4.5 Review

Regulation of tumor pH and the role of carbonic anhydrase 9

Journal

CANCER AND METASTASIS REVIEWS
Volume 26, Issue 2, Pages 299-310

Publisher

SPRINGER
DOI: 10.1007/s10555-007-9064-0

Keywords

fluorescence; hypoxia; imaging; intracellular and extracellular pH; nuclear magnetic resonance

Categories

Ask authors/readers for more resources

The high metabolic rate required for tumor growth often leads to hypoxia in poorly-perfused regions. Hypoxia activates a complex gene expression program, mediated by hypoxia inducible factor 1 (HIF1 alpha). One of the consequences of HIF1 alpha activation is up-regulation of glycolysis and hence the production of lactic acid. In addition to the lactic acid-output, intracellular titration of acid with bicarbonate and the engagement of the pentose phosphate shunt release CO2 from cells. Expression of the enzyme carbonic anhydrase 9 on the tumor cell surface catalyses the extracellular trapping of acid by hydrating cell-generated CO2 into HCO3- and H+. These mechanisms contribute towards an acidic extracellular milieu favoring tumor growth, invasion and development. The lactic acid released by tumor cells is further metabolized by the tumor stroma. Low extracellular pH may adversely affect the intracellular milieu, possibly triggering apoptosis. Therefore, primary and secondary active transporters operate in the tumor cell membrane to protect the cytosol from acidosis. We review mechanisms regulating tumor intracellular and extracellular pH, with a focus on carbonic anhydrase 9. We also review recent evidence that may suggest a role for CA9 in coordinating pH(i) among cells of large, unvascularized cell-clusters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available