4.5 Article

Widespread acceleration of tidewater glaciers on the Antarctic Peninsula

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006JF000597

Keywords

-

Funding

  1. NERC [bas010018] Funding Source: UKRI
  2. Natural Environment Research Council [bas010018] Funding Source: researchfish

Ask authors/readers for more resources

Over the last half century, the Antarctic Peninsula (AP) has been among the most rapidly warming regions on Earth. This has led to increased summer snowmelt, loss of ice shelves, and retreat of 87% of marine and tidewater glacier fronts. Tidewater-glacier flow is sensitive to changes in basal water supply and to thinning of the terminus, and faster flow leads directly to sea level rise. The flow rates of most AP tidewater glaciers have never been measured, however, and hence their dynamic response to the recent changes is unknown. We present repeated flow rate measurements from over 300 glaciers on the AP west coast through nine summers from 1992 to 2005. We show that the flow rate increased by similar to 12% on average and that this trend is greater than the seasonal variability in flow rate. We attribute this widespread acceleration trend not to meltwater-enhanced lubrication or increased snowfall but to a dynamic response to frontal thinning. We estimate that as a result, the annual sea level contribution from this region has increased by 0.047 +/- 0.011 mm between 1993 and 2003. This contribution, together with previous studies that assessed increased runoff from the area and acceleration of glaciers resulting from the removal of ice shelves, implies a combined AP contribution of 0.16 +/- 0.06 mm yr(-1). This is comparable to the contribution from Alaskan glaciers, and combined with estimated mass loss from West Antarctica, is probably large enough to outweigh mass gains in East Antarctica and to make the total Antarctic sea level contribution positive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available