4.8 Article

Activity-regulated N-cadherin endocytosis

Journal

NEURON
Volume 54, Issue 5, Pages 771-785

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2007.05.013

Keywords

-

Categories

Ask authors/readers for more resources

Enduring forms of synaptic plasticity are thought to require ongoing regulation of adhesion molecules, such as N-cadherin, at synaptic junctions. Little is known about the activity-regulated trafficking of adhesion molecules. Here we demonstrate that surface N-cadherin undergoes a surprisingly high basal rate of internalization. Upon activation of NMDA receptors (NMDAR), the rate of N-cadherin endocytosis is significantly reduced, resulting in an accumulation of N-cadherin in the plasma membrane. beta-catenin, an N-cadherin binding partner, is a primary regulator of N-cadherin endocytosis. Following NMDAR stimulation, beta-catenin accumulates in spines and exhibits increased binding to N-cadherin. Overexpression of a mutant form of beta-catenin, Y654F, prevents the NMDAR-dependent regulation of N-cadherin internalization, resulting in stabilization of surface N-cadherin molecules. Furthermore, the stabilization of surface N-cadherin blocks NMDAR-dependent synaptic plasticity. These results indicate that NMDAR activity regulates N-cadherin endocytosis, providing a mechanistic link between structural plasticity and persistent changes in synaptic efficacy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available