4.7 Article

Calculations of the ground states of BeH and BeH+ without the Born-Oppenheimer approximation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 21, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2736699

Keywords

-

Ask authors/readers for more resources

Non-Born-Oppenheimer variational calculations employing explicitly correlated Gaussian basis functions have been performed for the ground states of the beryllium monohydride molecule (BeH) and its ion (BeH+), as well as for the beryllium atom (Be) and its ion (Be+). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. The calculated energies were used to determine the ionization potential of BeH and the dissociation energies of BeH and BeH+. Also, the generated wave functions were used to compute various expectation values, such as the average interparticle distances and the nucleus-nucleus correlation functions. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available