4.6 Review

Strategies for interfacing solid-phase microextraction with liquid chromatography

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1152, Issue 1-2, Pages 2-13

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2006.11.073

Keywords

solid-phase microextraction; SPME-HPLC interfaces; in-tube SPME; liquid chromatography; sample preparation; sorbent phases; liquid desorption; off-line desorption

Ask authors/readers for more resources

Solid-phase microextraction (SPME) techniques are equally applicable to both volatile and non-volatile analytes, but the progress in applications to gas-phase separations has outpaced that of liquid-phase separations. The interfacing of SPME to gas chromatographic equipment has been straight-forward, requiring little modification of existing equipment. The requirement of solvent desorption for non-volatile or thermally labile analytes has, however, proven challenging for interfacing SPME with liquid-phase separations. Numerous options to achieve this have been described in the literature over the past decade, with applications in several different areas of analysis. To date, no single strategy or interface device design has proven optimal. During method development analysts must select the most appropriate interfacing technique among the options available. Out of these options three general strategies have emerged: (1) use of a manual injection interface tee; (2) in-tube SPME; and (3) off-line desorption followed by conventional liquid injection. In addition, there has been interest in coupling SPME directly to electrospray ionisation and matrix-assisted laser desorption ionisation (MALDI) for mass spectrometry. Several examples of each of these strategies are reviewed here, and an overview of their use and application is presented. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available