4.8 Article

Additive global noise delays turing bifurcations

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 23, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.230601

Keywords

-

Ask authors/readers for more resources

We apply a stochastic center manifold method to the calculation of noise-induced phase transitions in the stochastic Swift-Hohenberg equation. This analysis is applied to the reduced mode equations that result from Fourier decomposition of the field variable and of the temporal noise. The method shows a pitchfork bifurcation at lower perturbation order, but reveals a novel additive-noise-induced postponement of the Turing bifurcation at higher order. Good agreement is found between the theory and the numerics for both the reduced and the full system. The results are generalizable to a broad class of nonlinear spatial systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available