4.7 Article

A continuous electrical cell lysis device using a low dc voltage for a cell transport and rupture

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 124, Issue 1, Pages 84-89

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2006.11.054

Keywords

cell lysis; electroosmosis; electroosmotic pump; electric field modulation

Funding

  1. National Research Foundation of Korea [R16-2000-003-01001-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

We present a continuous and low voltage cell lysis device in which a width and length of a channel change to generate focused the high electric field strength for cell lysis and the low electric field strength for a transport of samples. The previous cell lysis devices acquire the high electric field strength for a cell lysis by applying an ac voltage to a micro-gap between electrodes and require additional pumps or valves for a sample transport. However, when we change the width and length of the channel between a pair of external electrodes attached to a dc voltage, we generate both the high electric field strength for a cell lysis and the low electric field strength for an electroosmotic flow. The present device therefore performs continuous cell lysis and a sample transport without needing either an additional flow source or an additional process fabricating the electrodes for the micro-gap. The experimental study features an orifice whose width and length is 20 times narrower and 175 times shorter than the width and length of a microchannel. With an operational voltage of 50 V, the present device generates high electric field strength of 1.2 kV/cm at the orifice to disrupt cells with 100% lysis rate of red blood cells and low electric field strength of 60 V/cm at the microchannel to generate an electroosmotic flow of 30 +/- 9 mu m/s. In conclusion, the present device is capable of continuous self-pumping cell lysis at a low voltage; thus, it is suitable for a sample pretreatment component of a micro total analysis system or lab-on-a-chip. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available