4.7 Article

Goal-oriented, model-constrained optimization for reduction of large-scale systems

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 224, Issue 2, Pages 880-896

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2006.10.026

Keywords

model reduction; optimization; partial differential equations

Ask authors/readers for more resources

Optimization-oriented reduced-order models should target a particular output functional, span an applicable range of dynamic and parametric inputs, and respect the underlying governing equations of the system. To achieve this goal, we present an approach for determining a projection basis that uses a goal-oriented, model-constrained optimization framework. The mathematical framework permits consideration of general dynamical systems with general parametric variations and is applicable to both linear and nonlinear systems. Results for a simple linear model problem of the two-dimensional heat equation demonstrate the ability of the goal-oriented approach to target a particular output functional of interest. Application of the methodology to a more challenging example of a subsonic blade row governed by the unsteady Euler flow equations shows a significant advantage of the new method over the proper orthogonal decomposition. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available