4.6 Article

Nitrogen oxide measurements at rural sites in Switzerland:: Bias of conventional measurement techniques

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 112, Issue D11, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006JD007971

Keywords

-

Ask authors/readers for more resources

[1] Nitrogen oxides (NOx = NO + NO2) in the atmosphere are often measured using instruments equipped with molybdenum converters. NO2 is catalytically converted to NO on a heated molybdenum surface and subsequently measured by chemiluminescence after reaction with ozone. The drawback of this technique is that other oxidized nitrogen compounds such as peroxyacetyl nitrate and nitric acid are also partly converted to NO. Thus such NO2 measurements are really surrogate NO2 measurements because the resultant values systematically overestimate the true value because of interferences of these compounds, especially when sampling photochemically aged air masses. However, molybdenum converters are widely used, and a dense network of surrogate NO2 measurements exists. As an alternative with far less interference, photolytic converters using ultraviolet light are nowadays applicable also for long-term measurements. This work presents long-term collocated NO2 measurements using molybdenum and photolytic converters at two rural sites in Switzerland. On a relative scale, the molybdenum converter instruments overestimate the NO2 concentrations most during spring/summer because of prevalent photochemistry. On a monthly basis, only 70 - 83% of the surrogate'' NO2 can be attributed to real'' NO2 at the non-elevated site and even less ( 43 - 76%) at the elevated one. The observed interferences have to be taken into account for monitoring and regulatory issues and to be considered when using these data for ground-truthing of satellite data or for validation of chemical transport models. Alternatively, an increased availability of artifact-free data would also be beneficial for these issues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available