4.8 Article

Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0703900104

Keywords

epithelial-mesenchymal transition; embryogenesis; Twist and Snail

Funding

  1. NCI NIH HHS [F32 CA101507, P30 CA 6516, P30 CA006516, 1F32 CA 101507, R21 CA 096689, P01 CA 80111, P01 CA080111] Funding Source: Medline

Ask authors/readers for more resources

The metastatic spread of epithelial cancer cells from the primary tumor to distant organs mimics the cell migrations that occur during embryogenesis. Using gene expression profiling, we have found that the FOXC2 transcription factor, which is involved in specifying mesenchymal cell fate during embryogenesis, is associated with the metastatic capabilities of cancer cells. FOXC2 expression is required for the ability of murine mammary carcinoma cells to metastasize to the lung, and overexpression of FOXC2 enhances the metastatic ability of mouse mammary carcinoma cells. We show that FOXC2 expression is induced in cells undergoing epithelial-mesenchymal transitions (EMTs) triggered by a number of signals, including TGF-ss 1 and several EMT-inducing transcription factors, such as Snail, Twist, and Goosecoid. FOXC2 specifically promotes mesenchymal differentiation during an EMT and may serve as a key mediator to orchestrate the mesenchymal component of the EMT program. Expression of FOXC2 is significantly correlated with the highly aggressive basal-like subtype of human breast cancers. These observations indicate that FOXC2 plays a central role in promoting invasion and metastasis and that it may prove to be a highly specific molecular marker for human basal-like breast cancers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available