4.8 Article

Environment-Sensitive Fluorescent Supramolecular Nanofibers for Imaging Applications

Journal

ANALYTICAL CHEMISTRY
Volume 86, Issue 4, Pages 2193-2199

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac4038653

Keywords

-

Funding

  1. NSFC [51222303, 51373079, 81301311]

Ask authors/readers for more resources

The combination of an environment-sensitive fluorophore, 4-nitro-2,1,3-benzoxadiazole (NBD), and peptides have yielded supramolecular nanofibers with enhanced cellular uptake, brighter fluorescence, and significant fluorescence responses to external stimuli. We had designed and synthesized NBD-FFYEEGGH that can form supramolecular nanofibers and emit brighter than its counterpart of NBD-EEGGH without the self-assembling property. The nanofibers of NBD-FFYEEGGH could specifically bind to Cu2+, leading to the formation of fluorescence quenched elongated nanofibers. This fluorescence quenching property was enhanced in self-assembling nanofibers and could be applied for detection of Cu2+ in vitro and within cells. In a further step, an enzyme-cleavable DEVD peptide was placed between NBD-FFY and the copper binding tripeptide GGH. The resulting self-assembling peptide NBD-FFFDEVDGGH also showed strong fluorescence quenching to Cu2+. Upon the enzymatic cleavage to remove the Cu2+-binding GGH tripeptide from the peptide, the fluorescence was restored. The cellular uptake of nanofibers was better than that of free molecules because of endocytosis. The supramolecular nanofibers with fluorescence turn-on property could therefore be applied for detection of caspase-3 activity in vitro and within cells. We believe that the combination of environnient-sensitive fluorescence and fast responses of supramolecular nanostructures would lead to a useful platform to detect many important analytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available