4.6 Article

Influence of polymer gate dielectrics on n-channel conduction of pentacene-based organic field-effect transistors

Journal

JOURNAL OF APPLIED PHYSICS
Volume 101, Issue 12, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2748869

Keywords

-

Ask authors/readers for more resources

This work elucidates the way polymer gate dielectrics affect the accumulation and transport of charge carriers in the active layer of organic field-effect transistors (OFETs). Incorporating a poly(vinyl alcohol) polymer interfacial film and another cross-linked poly(4-vinyl phenol) layer as a double-layer gate dielectric causes the pentacene-based OFETs to exhibit effective n-channel conduction of a saturated, apparent pinch-off drain-source current with the electron mobility of similar to 0.012 cm(2) V-1 s(-1). The formation of an n channel in the pentacene layer is supported by the increased capacitance that is identified by the quasistatic capacitance-voltage measurements of devices with the metal-insulator-semiconductor configuration, biased at a positive gate voltage, in the n-type accumulation regime. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available