4.6 Article

Subcellular localization and physiological significance of intracellular mannan-binding protein

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 24, Pages 17908-17920

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M700992200

Keywords

-

Ask authors/readers for more resources

Mannan-binding protein (MBP) is a C-type mammalian lectin specific for mannose and N-acetylglucosamine. MBP is mainly synthesized in the liver and occurs naturally in two forms, serum MBP (S-MBP) and intracellular MBP (I-MBP). S-MBP activates complement in association with MBP-associated serine proteases via the lectin pathway. Despite our previous study (Mori, K., Kawasaki, T., and Yamashina, I. (1984) Arch. Biochem. Biophys. 232, 223 -233), the subcellular localization of I-MBP and its functional implication have not been clarified yet. Here, as an extension of our previous studies, we have demonstrated that the expression of human MBP cDNA reproduces native MBP differentiation of S-MBP and I-MBP in human hepatoma cells. I-MBP shows distinct accumulation in cytoplasmic granules, and is predominantly localized in the endoplasmic reticulum (ER) and involved in COPII vesicle-mediated ER-to-Golgi transport. However, the subcellular localization of either a mutant (C236S/ C244S) I-MBP, which lacks carbohydrate-binding activity, or the wild-type I-MBP in tunicamycin-treated cells shows an equally diffuse cytoplasmic distribution, suggesting that the unique accumulation of I-MBP in the ER and COPII vesicles is mediated by an N-glycan-lectin interaction. Furthermore, the binding of I-MBP with glycoprotein intermediates occurs in the ER, which is carbohydrate-and pH-dependent, and is affected by glucose-trimmed high-mannose-type oligosaccharides. These results strongly indicate that I-MBP may function as a cargo transport lectin facilitating ER-to-Golgi traffic in glycoprotein quality control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available