4.8 Article

Proximity Hybridization Regulated DNA Biogate for Sensitive Electrochemical Immunoassay

Journal

ANALYTICAL CHEMISTRY
Volume 86, Issue 15, Pages 7494-7499

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac5012377

Keywords

-

Funding

  1. National Basic Research Program [2010CB732400]
  2. Ph.D. Fund for Young Teachers [20110091120012]
  3. Leading Medical Talents Program from Department of Health of Jiangsu Province

Ask authors/readers for more resources

An electrochemical DNA biogate was designed for highly sensitive homogeneous electrochemical immunoassay by combining target-induced proximity hybridization with a mesoporous silica nanoprobe (MSN). The electroactive methylene blue (MB) was sealed in the inner pores of MSN with single-stranded DNA. In the presence of target protein and two DNA-labeled antibodies, the formed proximate complex could hybridize with the DNA strand to form a rigid double-stranded structure and thus open the biogate, which led to the release of MB entrapped in the MSN. The target protein-dependent amount of released MB could be conveniently monitored with a screen-printed carbon electrode. Moreover, the detachment process of MB could be further amplified with an in situ enzymatic recycling binding of the proximate complex with the single-stranded DNA. Using prostate-specific antigen as a model target, the proposed assay showed a wide detection range from 0.002 to 100 ng mL(-1) with a detection limit of 1.3 pg mL(-1). This strategy was simple and universal for various analytes with different affinity ligands. This method possessed great potential for convenient point-of-care testing and commercial application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available