4.6 Article

Inositol-1,4,5-trisphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 581, Issue 3, Pages 1113-1127

Publisher

WILEY
DOI: 10.1113/jphysiol.2006.125955

Keywords

-

Funding

  1. NHLBI NIH HHS [R01 HL089617, R01 HL089617-01] Funding Source: Medline

Ask authors/readers for more resources

Embryonic stem cell-derived cardiomyocytes (ESdCs) have been proposed as a source for cardiac cell-replacement therapy. The aim of this study was to determine the Ca2+-handling mechanisms that determine the frequency and duration of spontaneous Ca2+ transients in single ESdCs. With laser scanning confocal microscopy using the Ca2+-sensitive dye Fluo-4/AM, we determined that spontaneous Ca2+ transients in ESdCs at the onset of beating (day 9) depend on Ca2+ entry across the plasma membrane (50%) whereas Ca2+-induced Ca2+ release is the major contributor to Ca2+ transients in ESdCs after 16 days (72%). Likewise, Ca2+ extrusion in 9-day-old ESdCs depends on Na+-Ca2+ exchange (50.0 +/- 8%) whereas Ca2+ reuptake by the sarco(endo)plasmic Ca2+ ATPase (72 +/- 5%) dominates in further differentiated cells. Spontaneous Ca2+ transients were suppressed by the inositol-1,4,5-trisphosphate (IP3) receptor (IP3R) blocker 2-aminoethoxydiphenyl borate (2-APB) and the phospholipase C blocker U73122 but continued in the presence of caffeine. Stimulation of IP3 production by phenylephrine or endothelin-1 had a positive chronotropic effect that could be reversed by U73122 and 2-APB. The presence of Ca2+-free solution and block of L-type Ca2+ channels by nifedipine also resulted in a cessation of spontaneous activity. Overall, IP3R-mediated Ca2+ release in ESdCs is translated into a depolarization of the plasma membrane and a whole-cell Ca2+ transient is subsequently induced by voltage-dependent Ca2+ influx. Although ryanodine receptor-mediated Ca2+ release amplifies the IP3R-induced trigger for the Ca2+ transients and modulates its frequencies, it is not a prerequisite for spontaneous activity. The results of this study offer important insight into the role of IP3R-mediated Ca2+ release for pacemaker activity in differentiating cardiomyocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available