4.8 Article

In Situ Generation of Electron Acceptor for Photoelectrochemical Biosensing via Hemin-Mediated Catalytic Reaction

Journal

ANALYTICAL CHEMISTRY
Volume 86, Issue 24, Pages 12362-12368

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac503741x

Keywords

-

Funding

  1. National Basic Research Program [2010CB732400]
  2. National Natural Science Foundation of China [21375060, 21135002, 21121091]

Ask authors/readers for more resources

A novel photoelectrochemical sensing strategy is designed for DNA detection on the basis of in situ generation of an electron acceptor via the catalytic reaction of hemin toward H2O2. The photoelectrochemical platform was established by sequential assembly of near-infrared CdTe quantum dots, capture DNA, and a hemin-labeled DNA probe to form a triple-helix molecular beacon (THMB) structure on an indium tin oxide electrode. According to the highly catalytic capacity of hemin toward H2O2, a photoelectrochemical mechanism was then proposed, in which the electron acceptor of O-2, was in situ-generated on the electrode surface, leading to the enhancement of the photocurrent response. The utilization of CdTe QDs can extend the absorption edge to the near-infrared band, resulting in an increase in the light-to-electricity efficiency. After introducing target DNA, the THMB structure is disassembled and releases hemin and, thus, quenches the photocurrent. Under optimized conditions, this biosensor shows high sensitivity with a linear range from 1 to 1000 pM and detection limit of 0.8 pM. Moreover, it exhibits good performance of excellent selectivity, high stability, and acceptable fabrication reproducibility. This present strategy opens an alternative avenue for photoelectrochemical signal transduction and expands the applications of hemin-based materials in photoelectrochemical biosensing and clinical diagnosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available