4.7 Article

EEL-1, a Hect E3 ubiquitin ligase, controls asymmetry and persistence of the SKN-1 transcription factor in the early C-elegans embryo

Journal

DEVELOPMENT
Volume 134, Issue 12, Pages 2303-2314

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.02855

Keywords

SKN-1; Hect ubiquitin ligase; protein degradation; cell fate specification; asymmetric cell division

Funding

  1. NIGMS NIH HHS [GM50838] Funding Source: Medline
  2. PHS HHS [5T32 HDO7183] Funding Source: Medline

Ask authors/readers for more resources

During early divisions of the C. elegans embryo, many maternally supplied determinants accumulate asymmetrically, and this asymmetry is crucial for proper cell fate specification. SKN-1, a transcription factor whose message is maternally supplied to the embryo, specifies the mesendodermal cell fate. In the 2-cell embryo, SKN-1 is expressed at a higher level in the posterior cell. This asymmetry becomes more pronounced at the 4-cell stage, when SKN-1 is high in the posterior cell's daughters and low in the daughters of the anterior blastomere. To date, the direct mechanisms that control SKN-1 distribution remain unknown. In this report, we identify eel-1, which encodes a putative Hect E3 ubiquitin ligase that shares several domains of similarity to the mammalian E3 ligase Mule. EEL-1 binds SKN-1 and appears to target SKN-1 for degradation. EEL-1 has two functions in regulating SKN-1 during early embryogenesis. First, eel-1 promotes the spatial asymmetry of SKN-1 accumulation at the 2- and 4-cell stages. Second, eel-1 acts in all cells to downregulate SKN-1 from the 12- to the 28-cell stage. Although loss of eel-1 alone causes a reduction in SKN-1 asymmetry at the 2-cell stage, the function of eel-1 in both the spatial and temporal regulation of SKN-1 is redundant with the activities of other genes. These data strongly suggest that multiple, functionally redundant pathways cooperate to ensure precise control of SKN-1 asymmetry and persistence in the early embryo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available