4.5 Article

Identification of novel chromatin-associated proteins involved in programmed genome rearrangements in Tetrahymena

Journal

JOURNAL OF CELL SCIENCE
Volume 120, Issue 12, Pages 1978-1989

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.006502

Keywords

DNA rearrangement; RNAi; ciliate; heterochromatin; chromodomain

Categories

Funding

  1. NIGMS NIH HHS [GM069593, GM16129, GM26210] Funding Source: Medline

Ask authors/readers for more resources

Extensive DNA rearrangements occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome of Tetrahymena thermophila. To identify genes encoding proteins likely to be involved in this process, we devised a cytological screen to find proteins that specifically localize in macronuclear anlagen (Lia proteins) at the stage when rearrangements occur. We compared the localization of these with that of the chromodomain protein, Pdd1p, which is the most abundant known participant in this genome reorganization. We show that in live cells, Pdd1p exhibits dynamic localization, apparently shuttling from the parental to the developing nuclei through cytoplasmic bodies called conjusomes. Visualization of GFP-tagged Pdd1p also highlights the substantial three-dimensional nuclear reorganization in the formation of nuclear foci that occur coincident with DNA rearrangements. We found that late in macronuclear differentiation, four of the newly identified proteins are organized into nuclear foci that also contain Pdd1p. These Lia proteins are encoded by primarily novel genes expressed at the beginning of macronuclear differentiation and have properties or recognizable domains that implicate them in chromatin or nucleic acid binding. Three of the Lia proteins also localize to conjusomes, a result that further implicates this structure in the regulation of DNA rearrangement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available