4.7 Article

Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 258, Issue 1-2, Pages 260-268

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2007.03.040

Keywords

East Pacific Rise; asthenosphere; low-velocity zone; surface waves; attenuation

Ask authors/readers for more resources

Low shear wave velocities beneath mid-ocean ridges and in the low-velocity zone beneath oceanic plates commonly have been attributed to the presence of melt or dissolved water, but several recent studies have challenged that interpretation. The alternative is that the anelastic effects of increasing temperature may cause the observed drop in velocity along with a predicted increase in attenuation. We report the first measurements of surface wave attenuation within regional arrays of seismometers on the seafloor. Near the East Pacific Rise, there is much less attenuation than is predicted by models in which the velocity is controlled solely by the direct elastic and anelastic effects of changing temperature, suggesting that melt and water concentration do play an important role. There also is somewhat less attenuation than is found in global studies; we speculate that scattering from unresolved velocity heterogeneities contribute to the apparent attenuation in global studies. (C) 2007 Elsevier B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available