4.7 Article

Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 91, Issue 10, Pages 938-943

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2007.02.010

Keywords

solar hydrogen production; photoelectrochemical; carbon-modified; titanium dioxide; nanotube

Ask authors/readers for more resources

Carbon modified (CM)-n-TiO2 nanotube arrays were successfully synthesized by anodization of Ti metal sheet in fluoride solution and subsequent annealing in air and natural gas flame oxidation. Both nanotube structure and carbon doping contributed to the enhancement of photoresponse of n-TiO2. About two fold increase in photocurrent density was observed at undoped n-TiO2 nanotube film compared to that at its undoped n-TiO2 flat thin film. Also, about eight fold increase in photocurrent density was observed at carbon modified (CM)-n-TiO2 nanotube film compared to that at undoped n-TiO2 flat thin film. The sample prepared by anodization at 20 V cell voltage for 20h followed by annealing in air at 500 degrees C for 1 h and natural gas flame oxidation at 820 degrees C for 18 min produced highest photocurrent density. It was found that the bandgap of n-TiO2 was reduced to 2.84 eV and an additional intragap band was introduced in the gap at 1.30 eV above the valence band. The bandgap reduction and the new intragap band formation in CM-n-TiO2 extended its utilization of solar energy up to the visible to infrared region. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available