4.6 Article

Fabrication of biomolecular nanostructures by scanning near-field photolithography of oligo(ethylene glycol)-terminated self-assembled monolayers

Journal

LANGMUIR
Volume 23, Issue 13, Pages 7328-7337

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la070196h

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [EP/C523857/1, GR/R60614/01] Funding Source: researchfish

Ask authors/readers for more resources

The UV photo-oxidation of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) has been studied using static secondary ion mass spectrometry, X-ray photoelectron spectroscopy, contact angle measurement, and friction force microscopy. OEG-terminated SAMs are oxidized to yield sulfonates, but photodegradation of the OEG chain also occurs on a more rapid time scale, yielding degradation products that remain bound to the surface via gold-sulfur bonds. The oxidation of these degradation products is the rate-limiting step in the process. Photopatterning of OEG-terminated SAMs may be accomplished by using a mask and suitable light source or by using scanning near-field photolithography (SNP) in which the mask is replaced by a scanning near-field optical microscope coupled to a UV laser. Using SNP, it is possible to fabricate patterns in SAMs with a full width at half-maximum height (fwhm) as small as 9 nm, which is approximately 15 times smaller than the conventional diffraction limit. SNP-patterned OEG-terminated SAMs may be used to fabricate protein nanopatterns. By adsorbing carboxylic acid-terminated thiols into oxidized regions and converting these to active ester intermediates, it has been possible to fabricate lines of protein molecules with widths of only a few tens of nanometers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available